Радиоприемное устройство прямого усиления дв, св диапазонов. Семитранзисторный дв – св приемник прямого усиления Эскизный расчет приемника

Это схема работает всего от одной 1,5 В батареи. В качестве аудио устройства воспроизведения применены обычные наушник с общим сопротивлением 64 Ом. Питания от батарейки проходит через разъем наушников, поэтому достаточно вытащить наушники из разъема, чтоб отключить приемник. Чувствительности приемника достаточно, что на 2-х метровую проводную антенну применять несколько качественных станций КВ и ДВ диапазона.


Катушка L1 изготавливается на сердечнике из феррита длиной 100 мм. Обмотка состоит из 220 витков провода ПЭЛШО 0,15-0,2. Намотка осуществляется в навалочку на бумажной гильзе длиной 40 мм. Отвод нужно сделать от 50 витка от заземленного конца.

Схема приемника всего на одном полевом транзисторе

Этот вариант схемы простого однотранзисторного FM-приемника, работает по принципу сверхрегенератора.


Катушка на входе состоит из семи витков медного провода сечением 0,2 мм, намотанных на оправке 5 мм с отводом от 2-го, а вторая индуктивность содержит 30 витков провода 0,2 мм. Антенна типовая телескопическая, питание от одной батарейки типа Крона, ток потребления при этом всего 5 мА, поэтому хватит на долго. Настройка на радиостанцию осуществляется конденсатором переменной емкости. На выходе схемы звук слабенький, поэтому для усиления сигнала подойдет практически любой самодельный УНЧ.


Главное достоинство этой схемы в сравнении с другими типами приемников это отсутствие каких-либо генераторов и поэтому нет высокочастотного излучения в приемной антенне.

Сигнал радиоволны принимается антенной приемника и выделяется резонансной цепью на индуктивности L1 и емкости С2 а затем поступает на детекторный диод и усиливается.

Схема приемника ФМ диапазона на транзисторе и LM386.

Представлагаю вашему вниманию подборку простых схем FM приемников на диапазон 87.5 до 108 МГц. Данные схемы имеет достаточно простые для повторентия, даже начинающим радиолюбителям, обладают не большими габаритами и с легкостью поместиться у вас в кармане.



Схемы несмотря на, свою простоту обладают высокой селективностью и хорошим соотношение сигнал-шум и его вполне хватает для комфортного прослушивания радиостанций

Основой всех этих радиолюбительских схем радиоприемников, являются специализированные микросхемы такие как: TDA7000, TDA7001, 174XA42 и другие.


Приемник предназначен для приема телеграфных и телефонных сигналов радиолюбительских станций, работающих в 40-метровом диапазоне. Тракт построен по супергетеродинной схеме с одним преобразованием частоты. Схема приемника построена так, что используется широко доступная элементная база, в основном это транзисторы типа КТ3102 и диоды 1N4148.

Входной сигнал из антенной системы поступает на входной полосовой фильтр на двух контурах Т2-С13-С14 и ТЗ-С17-С15. Связующим менаду контурами является конденсатор С16. Этот фильтр выделяет сигнал в пределах 7 ... 7,1 МГц. При желании работать в другом диапазоне можно соответствующим образом перестроить контур путем замены катушек-трансформаторов и конденсаторов.

Со вторичной обмотки ВЧ-трансформатора ТЗ, первичная обмотка которого является вторым звеном фильтра, сигнал поступает на усилительный каскад на транзисторе VT4. Преобразователь частоты выполнен на диодах VD4-VD7 по кольцевой схеме. Входной сигнал поступает на первичную обмотку трансформатора Т4, а сигнал генератора плавного диапазона на первичную обмотку трансформатора Т6. Генератор плавного диапазона (ГПД) выполнен на транзисторах VT1-VT3. Собственно генератор собран на транзисторе VT1. Частота генерации лежит в пределах 2,085-2,185 МГц, этот диапазон задается контурной системой, состоящей из индуктивности L1, и разветвленной емкостной составляющей из С8, С7, С6, С5, СЗ, VD3.

Перестройка в указанных выше пределах осуществляется переменным резистором R2, который является органом настройки. Он регулирует постоянное напряжение на варикапе VD3, входящем в состав контура. Напряжение настройки стабилизируется с помощью стабилитрона VD1 и диода VD2. В процессе налаживания перекрытие в указанном выше диапазоне частот устанавливают подстройкой конденсаторов СЗ и Сб. При желании работать в другом диапазоне или с другой промежуточной частотой требуется соответственная перестройка контура ГПД. Сделать это не сложно вооружившись цифровым частотомером.

Контур включен между базой и эмиттером (общим минусом) транзистора VT1. Необходимая для возбуждения генератора ПОС берется с емкостного трансформатора между базой и эмиттером транзистора, состоящего из конденсаторов С9 и СЮ. ВЧ выделяется на эмиттере VT1 и поступает на усилительно-буферный каскад на транзисторах VT2 и VT3.

Нагрузка - на ВЧ-трансформатор Т1. С его вторичной обмотки сигнал ГПД поступает на преобразователь частоты. Тракт промежуточной частоты выполнен на транзисторах VT5-VT7. Выходное сопротивление преобразователя низко, поэтому первый каскад УПЧ сделан на транзисторе VT5 по схеме с общей базой. С его коллектора усиленное напряжение ПЧ поступает на кварцевый фильтр, трехзвенный, на частоту 4,915 МГц. При отсутствии резонаторов на данную частоту можно использовать другие, например, на 4,43 МГЦ (от видеотехники), но это потребует изменения настроек ГПД и самого кварцевого фильтра. Кварцевый фильтр здесь необычный, он отличается тем, что его полосу пропускания можно регулировать.

Схема приемника. Регулировка осуществляется посредством изменения емкостей, включенных меэду звеньями фильтра и общим минусом. Для этого используются варикапы VD8 и VD9. Их емкости регулируются с помощью переменного резистора R19, изменяющего обратное постоянное напряжение на них. Выход фильтра - на ВЧ-трансформатор Т7, а с него на второй каскад УПЧ тоже с общей базой. Демодулятор выполнен на T9 и диодах VD10 и VD11. Сигнал опорной частоты на него поступает с генератора на VT8. В нем должен быть кварцевый резонатор такой же как в кварцевом фильтре. Низкочастотный усилитель выполнен на транзисторах VT9-VT11. Схема двухкаскадная с двухтактным выходным каскадом. Резистором R33 регулируется громкость.

Нагрузкой может быть как динамик, так и головные телефоны. Катушки и трансформаторы намотаны на ферритовых кольцах. Для Т1-Т7 используются кольца внешним диаметром 10мм (можно импортные типа Т37). Т1 - 1-2=16 вит., 3-4=8 вит., Т2 - 1-2=3 вит., 3-4=30 вит., ТЗ - 1-2=30 вит., 3-4=7 вит., Т7 -1-2=15 вит., 3-4=3 вит. Т4, Тб, T9 - втрое сложенным проводом 10 витков, концы распаять согласно номерам на схеме. Т5, Т8 - вдвое сложенным проводом 10 витков, концы распаять согласно номерам на схеме. L1, L2 - на кольцах диаметром 13 мм (можно импортные типа Т50), - 44 витка. Для всех можно использовать провод ПЭВ 0,15-0,25 L3 и L4 - готовые дроссели 39 и 4,7 мкГн, соответственно. Транзисторы КТ3102Е можно заменить другими КТ3102 или КТ315. Транзистор КТ3107 - на КТ361, но нужно чтобы VT10 и VT11 были с одинаковыми буквенными индексами. Диоды 1N4148 можно заменить на КД503. Монтаж выполнен объемным способом на куске фольгированного стеклотекстолита размерами 220x90 мм.

В этой статье приводится описание трех простейших приемников с фиксированной настройкой на одну из местных станций СВ или ДВ диапазона, это предельно упрощенные приемники с питанием от батареи "Крона", расположенные в корпусах абонентских громкоговорителей, содержащих динамик и трансформатор.

Принципиальная схема приемника показана на рисунке 1А. Его входной контур образует катушка L1, конденсатор cl и подключенная к ним антенна. Настройка контура на станцию осуществляется изменением емкости С1 или индуктивности Ll. Напряжение ВЧ сигнала с части витков катушки поступает на диод VD1, работающий в качестве детектора. С переменного резистора 81, являющегося нагрузкой детектора и регулятором громкости, напряжение низкой частоты поступает на базу VT1 для усиления. Отрицательное напряжение смещения на базе этого транзистора создается постоянной составляющей продетектированного сигнала. Транзистор VT2 второго каскада усилителя НЧ имеет непосредственную связь с первым каскадом.

Усиленный им колебания низкой частоты через выходной трансформатор Т1 поступают к громкоговорителю В1 и преобразуются им в аккустические колебания. Схема приемника второго варианта показана на рисунке. Приемник, собранный по этой схеме, отличается от первого варианта только тем, что в его усилителе НЧ используются транзисторы разных типов проводимости. На рисунке 1В приведена схема третьего варианта приемника. Отличительная его особенность - положительная обратная связь, осуществляемая с помощью катушки L2, что значительно повышает чувствительность и избирательность приемника.

Для питания любого приемника используется батарея с напряжением-9В, например «Крона» или составленная из двух батарей 3336JI или отдельных элементов, важно что бы хватило места в корпусе абонентского громкоговорителя, в котором собирается приемнмк. Пока на входе нет сигнала обе транзистора почти закрыты и токпо-требляемый приемником в режиме покоя не превышает 0,2 Ма. Максимальный ток при наибольшей громкости составляет 8-12 Ма. антенной служит любой провод длиной около пяти метров, а заземлением штырь, вбитый в землю. Выбирая схему приемника нужно учитывать местные условия.

На расстоянии около 100 км до радиостанции при использовании выше указанной антенны и заземления возможен громкоговорящий прием приемниками по двум первым вариантам, до 200 км - схема третьего варианта. При расстоянии до станции не более 30 км можно обойтись антенной в виде провода длиной 2 метра и без заземления. Приемники смонтированы объемным монтажом в корпусах абонентских громкоговорителей. Переделка громкоговорителя сводится к установке нового резистора регулировки громкости, совмещенного с выключателем питания и установке гнезд для антенны и заземления, при этом разделительный трансформатор используется в качестве Т1.

Схема приемника. Катушку входного контура наматывают на отрезке феритового стержня диаметром 6 мм и длиной 80 мм. Катушку наматывают на картонном каркасе, так что бы он мог с некоторым трением перемещаться вдоль стержня Для приема радиостанций ДВ диапазона катушка должна содержать 350, с отводом от середины, витков провода ПЭВ-2-0,12. Для работы в СВ диапазоне должно быть 120 витков с отводом от середины того же провода, катушку обратной связи для приемника третьего варианта наматывают на контурную катушку, она содержит 8-15 витков. Транзисторы нужно подобрать с коэффициентом усиления Вст не менее 50.

Транзисторы могут быть любые германиевые низкочастотные соответствующей структуры. Транзистор первого каскада должен иметь минимально возможный обратный ток коллектора. Роль детектора может выполнять любой диод серий Д18, Д20, ГД507 и другие высокочастотные. Переменный резистор регулятора громкости может быть любого типа, с выключателем, с сопротивлением от 50-ти до 200 килоом. Возможно и использование штатного резистора абонентского громкоговорителя,обычно там используются резисторы с сопротивлением от 68-и до 100 ком. В этом случае придется предусмотреть отдельный выключатель питания. В качестве контурного конденсатора использован подстроечный керамический конденсатор КПК-2.

Схема приемника. Возможно использование переменного конденсатора с твердый или воздушным диэлектриком. В этом случае можно ввести в приемник ручку настройки, и если конденсатор имеет достаточно большое перекрытие (в двухсекционном можно соединить параллельно две секции, максимальная емкость при этом удвоится) можно с одной средневолновой катушкой принимать станции в ДВ и СВ диапазоне. Перед настройкой нужно измерить ток потребления от источника питания при отключенной антенне, и если он более одного миллиампера заменить первый транзистор на транзистор с меньшим обратным током коллектора. Затем нужно подключить антенну и вращением ротора контурного конденсатора и перемещая катушку по стержню настроить приемник на одну из мощных станций.

Конвертор для приема сигналов в диапазоне 50 МГЦ Тракт ПЧ-НЧ трансивера предназначен для применения в схеме последнего, супергетеродинного, с однократным преобразованием частоты. Промежуточная частота выбрана равной 4,43 Мгц (используются кварцы от видеотехники)

Магнитные ферритовые антенны хороши своими небольшими размерами и хорошо выраженной направленностью. Стержень антенны должен располагаться горизонтально и перпендикулярно направлению на радиостанцию. Другими словами, антенна не принимает сигналов со стороны торцов стержня. Кроме того, они малочувствительны к электрическим помехам, что особенно ценно в условиях больших городов, где уровень таких помех велик.

Основными элементами магнитной антенны, обозначаемой на схемах буквами МА или WA, являются катушка индуктивности, намотанная на каркасе из изоляционного материала, и сердечник из высокочастотного ферромагнитного материала (феррита) с большой магнитной проницаемостью.

Схема приемника. Нестандартный детекторный

Схема его отличается от классической прежде всего, детектором построенным на двух диодах, и конденсаторе связи, позволяющим подобрать оптимальную нагрузку контура детектором, и тем самым, получить максимальную чувствительность. При дальнейшем уменьшении емкости С3 резонансная кривая контура становится еще острее, т. е. селективность растет, но чувствительность несколько уменьшается. Сам колебательный контур состоит из катушки и конденсатора переменной емкости. Индуктивность катушки тоже можно изменять в широких пределах, вдвигая и выдвигая ферритовый стержень.

Пусть читатель не сочтет архаичностью, что раздел о микросхемах невелик и вынесен в конец главы. Дело в том, что нет хороших микросхем для приемников прямого усиления за исключением одной импортной, о ней речь ниже. Ассортимент аналоговых микросхем весьма велик, их можно установить и в УРЧ, и в УЗЧ, но попытка их использования если и дает хорошие параметры приемника, то приводит к ухудшению экономичности. Так что затратив немного больше труда и времени, можно получить лучшие результаты, собрав приемник на дискретных элементах (на «рас-сыпухе»), как, собственно, мы и делали до сих пор.

Упомянутая единственная микросхема, специально предназначенная для приемников прямого усиления, - это ZN414Z фирмы Plessey, специализирующейся, среди всего прочего, и на выпуске микросхем для радиоприемной и связной аппаратуры. Эта микросхема выполнена в трехвыводном транзисторном корпусе, однако внутри содержит 10 транзисторов. На них выполнены четырехкаскадный УРЧ с высоким входным сопротивлением, транзисторный детектор и система АРУ, то есть все элементы РЧ тракта приемника прямого усиления. Микросхема чрезвычайно экономична: потребляет всего 0,35 мА от источника питания с напряжением 1,3 В.

Схема радиотракта на этой микросхеме изображена на рис. 1. Входной контур L1 - С1 может перестраиваться в диапазонах ДВ или СВ, причем катушка может служить и магнитной антенной. Постоянная времени цепи АРУ определяется цепочкой R1C2, в AM приемниках она обычно выбирается равной примерно 0,05-0,1 с. Резистор R2 служит нагрузкой детекторного каскада и через него же поступает питание на весь приемник. Ориентировочно его сопротивление составляет единицы килоом.

Рис. 1. Радиотракт на MCZN414Z.

Конденсатор СЗ сглаживает высокочастотные пульсации, фильтруя выходной сигнал ЗЧ, который через разделительный конденсатор поступает на УЗЧ, собранный на какой-либо другой микросхеме. Вероятно, можно подключить и высокоомные наушники вместо резистора R2.

Из большого ассортимента отечественных микросхем УЗЧ неплохой экономичностью отличается КР174УН23, представляющая собой двухканальный усилитель мощности (до 0,5 Вт на нагрузке 8 Ом) с питанием от одного, двух или трех гальванических элементов. Ток покоя составляет от 4,5 мА при напряжении питания 1,5 В до 6,5 мА при напряжении питания 4,5 В. Оба канала УЗЧ моіуг работать независимо, при воспроизведении стереопрограмм, либо включаться по мостовой схеме для увеличения выходной мощности в монорежиме.

И. Нечаевым предложен оригинальный вариант использования этой МС: один канал в качестве УРЧ, другой канал как УЗЧ приемника прямого усиления. АЧХ УРЧ имеет небольшой подъем на частотах до 3 МГц, а затем резкий спад.


Рис. 2. Приемник на MC КР174УН23.

Таким образом, полоса частот усилителя достаточна для диапазонов ДСВ. Схема приемника показана на рис. 2. Входной контур образован переключаемыми катушками L1L2 и КПЕ С1 любого типа с максимальной емкостью не менее 180 пФ. Через катушку связи L3 сигнал подается на вход одного канала усилителя, а с его выхода - на детектор, собранный по схеме удвоения напряжения на германиевых диодах VD1, VD2. В случае использования кремниевых диодов на них нужно подать небольшое открывающее смещение, установив резистор R4. Отфильтрованный цепочкой C4R2C7, сигнал ЗЧ поступает на другой канал усилителя, а с его выхода - на динамическую головку ВА1 с сопротивлением порядка 8 Ом.

В серии К174 имеется интересная микросхема, содержащая все узлы стандартного супергетеродинного радиовещательного приемника: преобразователь частоты, УПЧ и УЗЧ с выходной мощностью до 0,5 Вт. Это МС К174ХА10, работоспособная при напряжении питания от 3 до 9 В и потребляющая (при малой громкости) 8-10 мА. Используя часть ее узлов, можно собрать и простой приемник прямого усиления. Преобразователь частоты в этом варианте не используется, УПЧ служит как УРЧ, а детектор и УЗЧ работают по прямому назначению. Схема приемника показана на рис. 4. Входной контур с магнитной антенной могут быть выполнены так же, как и в предыдущей конструкции. Для повышения чувствительности использован истоковый повторитель на транзисторе VT1, если же очень высокая чувствительность не нужна, его допустимо исключить, подсоединив катушку связи между общим проводом и левым (по схеме) выводом конденсатора С2.


Рис.3. Печатная плата приемника на МС КР174УН23.

УПЧ в этой МС выполнен на дифференциальных каскадах и подсоединен к симметричному входу детектора, поэтому оказался необходимым симметрирующий широкополосный трансформатор Т1. Он наматывается на кольце диаметром 7-10 мм из феррита с магнитной проницаемостью 1000-1500 и содержит 100-200 витков любого тонкого провода.


Рис. 4. Приемник на МС К174ХА10.

Наматывать трансформатор целесообразно двумя сложенными вместе проводами; затем начало одного провода соединяется с концом другого, образуя средний вывод. При нежелании заниматься этой работой достаточно несколько изменить схему: вывод 14 МС соединить с проводом питания непосредственно, а вывод 15 - через подстроечный резистор сопротивлением 100 кОм. Он регулируется по минимальным искажениям при детектировании, которые получаются несколько выше, а коэффициент передачи примерно вдвое ниже, чем с трансформатором.

Продетектированный сигнал ЗЧ подается через фильтрующую цепочку С8 - R3 - С9 на регулятор громкости R4 и далее, на вход УЗЧ. Динамическая головка может иметь сопротивление от 6 до 50 Ом, но оптимальным следует считать 8 Ом. Налаживание приемника (чем хороши микросхемы) сводится лишь к установке диапазона принимаемых частот.

Как видим, микросхемы в приемниках прямого усиления целесообразнее всего использовать лишь в УЗЧ. Есть широкий выбор УЗЧ в серии К174 на любую желаемую мощность. Описывать их нет смысла, так как стандартные схемы включения даются в справочниках. Представляет некоторый интерес нестандартное использование, в частности, операционный усилитель средней мощности К157УД1 показал неплохие результаты в качестве УЗЧ, работая при напряжении питания от 4 до 24 В при токе покоя около 4 мА. Подробнее УЗЧ на этой МС описан в, а также в конце пятой главы этой книги.

Наверное, каждый, кто хоть раз слушал SDR приемник или трансивер, не смог остаться равнодушным к его приему, а особенно к удобству, которое проявляется в том, что станции на диапазоне можно не только слышать, но и видеть. Обзор диапазона на панораме SDR трансивера позволяет быстро и визуально находить станции в полосе приема, что значительно ускоряет поиск корреспондентов во время контестов, да и при повседневной работе в эфире. С помощью «водопада» визуально отслеживается история сигналов на диапазоне и можно легко осуществить переход на интересного корреспондента. К тому же сама панорама показывает нам АЧХ принимаемых станций, их полосу и ширину излучения, что позволяет оперативно находить свободный участок на диапазоне для вызова других радиолюбителей.
Это только если говорить о визуальной части SDR, но также не стоит забывать и об обработке сигналов, как на прием, так и на передачу. Полный контроль ширины и всего, что находится в полосе приема. При правильном выборе необходимых параметров в пунктах меню настроек, сигнал на передачу тоже звучит великолепно.
Но есть одно обстоятельство, чтобы заставить работать SDR, нужны дополнительные устройства: собственно компьютер с качественной звуковой картой, на которой происходит основная обработка сигнала и хороший монитор с высоким разрешением экрана. Естественно, необходимо соответствующее программное обеспечение к нему и к SDR трансиверу, которое стоит не дёшево. Всё это уже влечет за собой определенные специфические требования к знаниям компьютера у радиолюбителя. Что не всегда, и не у всех, к сожалению присутствует.
Имеется еще один недостаток. Если на прием этого не заметно, то на передачу, в связи со специфической обработкой звукового сигнала в компьютере, возникает значительная задержка сигнала более 150 мс, что полностью исключает нормальную работу самоконтроля во всех видах излучения. Спасает только дополнительный контрольный приемник или товарищ, у которого тоже имеется SDR трансивер, который сделает запись принимаемого сигнала.
В настоящее время, с появлением поколения доступных микропроцессоров от STM, появилась возможность разработки устройств, способных частично заменить некоторые основные функции больших компьютеров. А именно, обработка DSP звука и управление трансивером, а также графическое отображение информации на дисплее трансивера.
Как итог, основные узлы такого трансивера, позволяют отказаться от внешнего компьютера . Но при этом, как на внешнем компьютере, сохраняется удобный сервис по управлению трансивером, различные режимы записи сигналов, как на прием, так и на передачу, с последующим воспроизведением записей через наушники или в эфир во время передачи, сохранение необходимой информации на внешней SD-карте, которая выводится на собственный большой дисплей с широкой полосой обзора, а так же обработка DSP и формирование сигнала со всеми основными видами излучения. Такие трансиверы обеспечивают качественный прием сигнала, высокую крутизну фильтров с плавными настраиваемыми границами, автоматический Notch фильтр. В них на передачу применяется многополосные графические эквалайзеры, компрессоры, ревербераторы, а самое главное, получается минимальное время задержки. При наличии внешнего синтезатора, контроллеры трансиверов легко работают с аналоговыми SDR. В этих современных трансиверах широко применяются радиотракты HiQSDR и HiQSDR-mini 2.0, которые управляются отдельной шине SPI, или через плату DSP по основной шине SPI при минимуме связующих проводов.
Ещё несколько лет назад начался выпуск SDR-трансиверов, работающих по принципу непосредственного преобразования радиочастотного сигнала на звуковую ПЧ, в которых в одном корпусе располагается упрощённая (по сравнению с классической схемой) плата радиоканала и специализированный компьютер. Основной упор здесь делается на программное обеспечение. Основная стоимость готового изделия так же определяется стоимостью софта. Оборудование Flex и Sun SDR построены именно по такому принципу.
В настоящее время принцип обработки сигналов на основе методов ЦОС (DSP) перешёл к следующему этапу своей эволюции. Появился новый метод прямой оцифровки сигнала с антенны с последующим непосредственным формированием сигнала из цифры, позволяющий избавиться практически от всех видов проблем присущих как классике, так и SDR-технологиям с аппратаной обработкой сигнала.
Радиоприёмники и трансиверы с прямой оцифровкой сигнала имеют аббревиатуру DDC (от Digital Down-Converter). Обратное преобразование из цифры в аналог имеют аббревиатуру DUC (от Digital Up-Converter). Речь идёт о цифровом преобразовании сигнала программным методом. Сразу нужно отметить, что аббревиатура SDR (Software Define Radio) - программно определяемое радио - это только общее определение класса технологий обработки сигналов, куда входит и DDC - архитектура, как один из методов.

Уже сегодня, с появлением поколения доступных микропроцессоров, появилась возможность разработки устройств, способных частично заменить некоторые основные функции больших компьютеров. А именно, обработка DSP звука и управление трансивером, а также графическое отображение информации на дисплее трансивера. В архитектуре DDC мгновенно оцифровывается весь спектр сигналов от 0 Гц до частот, которые способна обработать микросхема АЦП. Самые современные микросхемы АЦП на сегодня могут работать в полосе до 1ГГц, но их стоимость сегодня пока очень высока. В тоже время, наиболее ходовые и относительно дешёвые микросхемы АЦП оцифровывают спектр полосой от 0 Гц до 60...100 МГц, что для радиолюбительских задач вполне подходит. После оцифровки спектра сигналов в полосе 0 Гц - 30...60 МГц на выходе микросхемы АЦП получается очень большой цифровой поток данных, который в дальнейшем обрабатывается высокоскоростными микросхемами ПЛИС. В них программным способом реализован алгоритм DDC/DUC, т.е. цифровой понижающий или повышающий конвертер.
Цифровой понижающий конвертер производит выборку спектра необходимой полосы и передачу его в компьютер для обработки - т.е. создаётся цифровой поток существенно меньшей полосы и скорости. В компьютере происходит программная обработка потока методами ЦОС и конечная демодуляция сигнала.
В практической деятельности очень редко возникает необходимости работать со всем спектром сигналов в полосе 0 Гц - 30...60 МГц. Максимальные полосы, которые нам нужны для обработки - это 10...50 кГц для демодуляции АМ, ЧМ сигналов и 3...5 кГц для SSB сигналов.
Этот самый передовой метод обработки сигналов был реализован в радиолюбительских трансиверах TULIP-DSP и отечественном аналоге – Тюльпан-DDС/DUC.

Подобный принцип формирования сигнала применяется и в трансиверах одной известной фирмы, начавший выпуск новых моделей ещё в 2015 году. Фрагмент структурной схемы такого трансивера представлен ниже.

Если раньше, ещё несколько лет назад, даже в таких передовых трансиверах типа ICOM IC-756Pro3 и IC-7600 применяется метод последовательной развёртки спектра и был заметен процесс обновления картинки - т.е. быстрое сканирование, то теперь наблюдение и обработка сигнала происходит в комплексе, параллельно, так как перестройка частоты происходит мгновенно программным методом. За счёт того, что оцифровывается сразу большой частотный участок 30...60 МГц, не теряя настройку на текущую радиостанцию, появляется возможность увидеть, что происходить на соседнем участке спектра. Мало того, вызвав второй виртуальный приёмник вы одновременно можете слышать, о чём говорят на одном и втором диапазоне. Но и два приёмника это не предел. Есть возможность вызвать три, пять, десять... сколько угодно приёмников. Микшируя их звук определённым образом, вы в курсе происходящих событий на диапазонах. А графика «облаком» позволит быстро выбрать нужную станцию.
Тоже самое относится и к отображению спектра. На практике, редко когда нужен сразу весь участок 30...60 МГц. При необходимости, можно сравнительно легко выделить из общего цифрового потока второй, третий, четвёртый и вообще, сколько необходимо малых потоков и передать их в компьютер, создав тем самым одновременно несколько каналов приёма. Таким методом реализуются два, три или сколько нужно «виртуальных приёмников» во всей полосе оцифровки. Например, создаём отдельную панораму на диапазон 40 метров, отдельную на 20-ти метровый диапазон и на остальные диапазоны..., размещаем их на отдельном мониторе и вот мы получили возможность наблюдать в реальном формате времени за условиями прохождения на выбранных нами участках.

С одной стороны, наличие зеркальных полос - это недостаток. Так как понятие ДД относится ко всему спектру оцифровки, то значительно разгрузить вход АЦП можно, уделив внимание входным цепям приёмника, которые лучше делать высокодобротными и перестраиваемыми. Как альтернативный вариант – применение во входных цепях ФНЧ с частотой среза половины частоты тактирования или диапазонных полосовых фильтров. Они могут дополнительно ослаблять сильные внеполосные сигналы, отстоящие от рабочей полосы достаточно далеко. При этом, теряется возможность обзора всего диапазона оцифровки. Такие методы предварительной селекции оправданы, в случае, если планируется использовать DDC-приёмник совместно с большими антеннами или в местности со сложной помеховой обстановкой.
С другой стороны - этот недостаток предоставляет технологическую возможность простыми средствами реализовать не только приём на КВ диапазоне, но и на УКВ и даже на ДЦВ диапазонах. Необходимо всего лишь делать сменные диапазонные полосовые фильтры с МШУ, полосами равными половине тактовой частоты.
Например, в некоторые DDC приёмники ставят отключаемый фильтр на СВ-ДВ диапазон, а в одном из DDC-приёмников компании WiNRADiO и DDC-приёмнике Perseus, есть гибко конфигурируемые узкополосные фильтры.
Ещё каких-нибудь 20 лет назад ни о чём подобном мы не могли даже и мечтать, когда панорамная приставка к трансиверу была размером в 2 раза больше самого трансивера и стоила в 5-10 раза дороже. Про сервис с качеством и говорить не приходится. Появившаяся в начале 2000-ых годов технология SDR позволила взглянуть на эфир и услышать его совсем иначе. Мы увидели настоящий живой эфир! Не статическую «замороженную» картинку после медленного сканирования, а именно, живой эфир в реальном времени.
Если, для того что бы увидеть урезанную панораму других диапазонов в первых SDR трансиверах с аппаратным преобразованием сигналов, необходимо иметь отдельный приёмный тракт для каждого диапазона, то в приёмном тракте, выполненным по современной технологии DDC доступен как любой из участков диапазона, так и весь диапазон, и при этом параллельно с отдельными участками его участками. Реализация всех этих возможностей возможна только благодаря методам ЦОС и прямой оцифровки сигнала.
Касательно радиолюбительской тематики, одной из самых востребованных функций в настоящее время и ближайшем будущем - это пространственная селекция сигналов и методы фазового подавления шумов. На сегодня существует фазовый метод селекции сигналов и подавления шумов, реализуемый аппаратно. Кроме того, используя математические алгоритмы, легко реализуемы любые функции по вычитанию мешающих и сложению полезных сигналов, образуемые парой, четвёркой или большим количеством АЦП.
С применением этих современных разработок появилась возможность дистанционного управления трансивером и удалённая работа в эфире. Современные способы передачи информации способны пропускать достаточно большие потоки данных и практически без потерь. Общий поток информации из/в трансивер совсем получается небольшой. Используя IP-стек, появляется возможность использовать трансивер как сегмент сети даже без использования компьютера. Установив трансивер за пределами большого города в достаточно тихой местности, - вы можете иметь доступ к радиоэфиру не выходя из своей квартиры. Организовав гостевой доступ к трансиверу, вы предоставляете возможность друзьям поработать в эфире. Ещё одной полезной функцией, применяемой специальными службами, является возможность записывать весь радиоэфир, или заданные куски радиоэфира, на винчестер компьютера с отсроченной обработкой. Эта функция позволяет быстро проводить статистическую обработку сигналов, вести поиск и наблюдение за целевыми сигналами, а также совершать множество операций, о которых знать обычному пользователю не положено.

Вы можете выбрать интересующие Вас рации в

Усилитель РЧ собран на транзисторах VTI и VT2, а в эмиттерную цепь второго транзистора включен светодиод HLI – он является индикатором настройки. С нагрузки второго каскада (резистор R2) сигнал РЧ поступает через конденсатор С7 на детектор, выполненный на транзисторе VT3. Нагрузкой детектора является резистор R8, радиочастотная составляющая продетектировапного сигнала фильтруется цепочкой C9 R9 C10.

Каскад на транзисторе VT3 выполняет также функции усилителя сигнала АРУ и стабилизатора режима усилителя РЧ. Напряжение смещения, а также напряжение усиленного сигнала АРУ поступает на усилитель РЧ через резистор R4. Когда возрастает входной сигнал РЧ, увеличивается постоянная составляющая продетектированного сигнала, а значит, уменьшается эмиттерный ток транзистора VT2. Яркость светодиода падает, что свидетельствует о точной настройке на радиостанцию. Начальный режим работы усилителя РЧ устанавливают подстроечным резистором R5. Входная цепь приемника рассчитана на работу в диапазонах СВ и ДВ. Когда переключатель SAI находится в положении «СВ» (оно показано на схеме), катушки L1 и L2 оказываются включенными параллельно. При установке переключателя в положение «ДВ» катушки включаются последовательно. В обоих случаях соблюдается нужная фазировка включения катушек. Часть выделенного колебательным контуром сигнала подается через катушку связи L3 на усилитель РЧ.

Что касается усилителя ЗЧ, то нетрудно заметить, что он собран практически по такой же схеме, что и многие предыдущие приемники. Незначительные схемные отличия объясняются применением транзисторов VT4 и VT5 обратной, по сравнению с вышеупомянутыми схемами, структуры да необходимостью снизить ток покоя мощных выходных транзисторов (из-за этого параллельно диодам VDI, VD2 включен резистор R18). Для развязки каскадов РЧ от каскадов ЗЧ по цепи питания введен фильтр R15C5C3. Шунтирование оксидного конденсатора СЗ конденсатором С5 способствует снижению возможности самовозбуждения приемника на радиочастотах. Таково же назначение конденсатора С16, шунтирующего совместно с оксидным конденсатором С17 источник питания GB1. Магнитная антенна выполнена на ферритовом стержне от приемника «Юность 105». Катушки L1 и L2 расположены на расстоянии 10 мм от краев стержня, L3 -в центре стержня. Катушка L1 намотана виток к витку в несколько слоев на длине 15 мм и содержит 70 витков провода ЛЭШО 8х0,07. На такой же длине и таким же способом намотана катушка L2, содержащая 220 витков провода ПЭЛШО 0,1. Катушка L3 содержит 6 витков провода ПЭЛШО 0,15, намотанных виток к витку. Чертеж печатной платы приемника приведен в .

Приемник (см. рисунок ниже) состоит из магнитной антенны МА, двухкаскадного усилителя радио частоты (УРЧ), амплитудного детектора и усилителя звуковой частоты (УЗЧ) на микросхеме.

Основные принципы, заложенные при проектировании РПУ:

  • простота конструкции;
  • высокая повторяемость;
  • не критичность к применяемым деталям;
  • простота в настройке.

Приемная антенна, предназначенная для улавливания энергии радиоволн, представляет собой катушку индуктивности L1 намотанную на ферритовом стержне. Настройка антенного контура на желаемую волну осуществляется конденсатором переменной емкости С1, подключенным параллельно выводам катушки L1. В описываемом приемнике используется конденсатор переменной емкости 5/380 пФ. С помощью такого конденсатора можно изменять длину принимаемой волны примерно в 7 раз. Максимальная длина волны выбрана равной 2000 м, следовательно, минимальная состоит около 280 м. То есть приемник настраивается на желаемую радиостанцию без каких-либо переключений только с помощью одного конденсатора переменной емкости в диапазоне длинных и средних волн. Правда, при этом, оказывается неохваченным участок диапазона от 200 до 280 м. В случае необходимости диапазон принимаемых радиоволн может быть смещен в сторону более коротких волн, для чего следует несколько уменьшить число витков катушки индуктивности L1.

Принятая антенной энергия радиоволн создает в катушке L1 электродвижущую силу (ЭДС), величина которой для данного приемника составляет 5-10 мВ при средней напряженности поля, равной 20-40 мВ/м. В то же время известно, что для неискаженной работы детектора приемника требуется напряжение не менее 20-30 мВ. В связи с этим между магнитной антенной и детектором необходимо иметь усилитель радио частоты.

Подключить вход обычного усилителя РЧ на транзисторах ко всему контуру магнитной антенны нельзя. Дело в том, что сопротивление настроенного контура в резонанс с радиостанцией исчисляется сотнями килоом, тогда как входное сопротивление усилителя – около 1 кОм, то есть примерно в сотни раз меньше.

Поэтому на вход усилителя подается не всё напряжение, развиваемое на контуре, а только его некоторая очень небольшая часть. Делается это обычно с помощью катушки связи L2, находящейся на стержне магнитной антенны рядом с катушкой индуктивности L1. Количество витков катушки связи берется в 20-30 раз меньше, чем количество витков контурной катушки. В данном приемнике катушка индуктивности L1 содержит 250 витков, а L2 всего 10 витков. Таким образом, напряжение на катушке L2 будет в 25 раз меньше, чем на катушке L1 и составит всего 200-400 мкВ.

Поскольку для нормальной работы детектора требуется напряжение сигнала не менее 20-30 мВ, то усилитель РЧ должен увеличить входной сигнал в 100-150 раз. На практике всегда необходимо иметь запас усиления хотя бы в 2-3 раза. Поэтому реальный коэффициент усиления по напряжению усилителя ВЧ должен составлять не менее 300-500. Обеспечить столь большое усиление можно только с помощью двухкаскадного усилителя РЧ.

Усилитель радио частоты приемника состоит из двух одинаковых каскадов, выполненных на транзисторах VT1 и VT2 по апериодической схеме. Первый каскад включает в себя транзистор VT1 три резистора цепи стабилизации режима работы транзистора по постоянному току (R1, R2, R4), сопротивление коллекторной нагрузки – резистор R3, переходный конденсатор С2 и блокировочный С4, шунтирующий резистор R4 по переменному току.

Напряжение сигнала на катушке индуктивности L2 вызывает в цепи базы транзистора ток, который усиливается в цепи коллектора. Часть усиленного тока протекает через резистор R3, остальной ток через переходный конденсатор С3 поступает в цепь базы транзистора VT2. За счет усиления по току, обеспечиваемого первым каскадом, напряжение сигнала на входе второго каскада становится больше, чем на катушке индуктивности L2. В зависимости от усилительных свойств применяемых транзисторов первый каскад может обеспечивать усиление по напряжению от 10 до 30 раз.

Второй каскад работает точно так же, как и первый, отличие заключается в величине оконечной нагрузки. Если основной нагрузкой первого каскада по переменному току является низкоомное входное сопротивление второго каскада, то для второго каскада такой нагрузкой является относительно высокоомное входное сопротивление детектора. За счет большего сопротивления оконечной нагрузки коэффициент усиления второго каскада по напряжению составляет около 50 и мало изменяется при смене транзисторов. Таким образом, общее усиление по напряжению до детектора может составлять примерно (10 – 30)*50 = 500-1500 раз.

Усилительные свойства каскада зависят как от типа применяемых транзисторов, так и от режима их работы. Транзистор может обеспечить значительное усиление сигнала только в том случае, когда его коэффициент передачи по току был больше 10, а максимальная частота усиливаемого сигнала, по крайней мере, в 20-30 раз была меньше предельной частоты транзистора.

В данном случае максимальная частота сигнала может составлять 1,1 - 1,5МГц (длина волны 200-280м), а поэтому предельная частота применяемых транзисторов должна быть не менее 20-45 МГц. Этому условию удовлетворяют транзисторы КТ3102.

Следует иметь в виду, что даже самый хороший транзистор будет работать неудовлетворительно, если не установить необходимый для него режим. Под режимом работы транзистора понимают постоянное напряжение между коллектором и эмиттером, часто называемое просто напряжением коллектора, и постоянный ток коллектора (или эмиттера). Для большинства типов низкочастотных и высокочастотных транзисторов, работающих в каскадах усиления напряжения, обычно рекомендуется следующий режим: напряжение коллектора от 2,5 до 9 в, ток коллектора от 0,5 до 2 мА. Усилительные свойства транзисторов улучшаются с увеличение напряжения и тока, но при этом возрастает расход энергии источника питания. В карманных и портативных приемниках, питаемых от малогабаритных батарей с ограниченным сроком службы, экономное расходование энергии имеет большое значение. Поэтому в данном приемнике был выбран некоторый средний режим, а именно: ток коллектора 1 -1,1 мА, напряжение на коллекторе около 4,2 В.

Режим работы транзисторов стабилизирован с помощью трех постоянных резисторов, один из которых (R4 и R9) включен в цепь эмиттера, два других (R1, R2 и R6, R7) образуют делитель напряжения в цепи базы. Для того чтобы режим работы не зависел от параметров применяемых транзисторов и колебаний температуры, указанные элементы смещения должны быть подобранны таким образом, чтобы постоянное напряжение на резисторе в цепи эмиттера было не менее 1,2 В, а собственный ток делителя напряжения составлял не менее одной четвертой части от тока коллектора. При выбранном значении тока коллектора в этом случае сопротивление резистора в цепи эмиттера должно составлять 1,2В*1мА=1,2кОм, а сопротивление резистора нижнего плеча делителя напряжения необходимо выбирать примерно в 3-4 раза больше значения резистора в эмиттера. Величины сопротивлений резисторов R4 и R9 выбраны равными 1,2кОм. Сопротивление коллекторной нагрузки транзисторов VT1 и VT2 можно определить из соотношения: Rн=0,4*Еп/Iкп=0,4*9В/1мА=3,6кОм, а падение напряжения на них составит Urн=Rн*Iкп=3,6кОм*1ма=3,6В При этом, сопротивление резистора нижнего плеча делителя напряжения станет равным 1,2кОм*(3-4)=3,6 – 4,8кОм. Для уменьшения количества номиналов резисторов следует принять R2=R7= R3= R8=3,6 кОм. Сопротивление резистора верхнего плеча делителя (R1 и R6) определено из условия: R1=R6=2,4*(Eп-Urэ)/Iкп=2,4*(9В-1,2В)/1мА=20кОм.

При токе коллектора, равном 1-1,2 мА, постоянное напряжение на коллекторе относительно «минуса» питания составит около 3,6 В, а напряжение на эмиттере относительно «минуса» примерно 1,2 В. В этом случае напряжение на коллекторе относительно эмиттера составит около 4,2 В. Реальные значения токов и напряжений могут отличаться от указанных в пределах ±10%, что связано с разбросом параметров как самих транзисторов, так и резисторов смещения.

Конденсаторы С2, С3, С5 являются переходными. Они предназначены, во-первых, для разделения между собой каскадов по постоянному току, во-вторых, для передачи с возможно меньшими потерями выходного напряжения одного каскада на вход последующего. Величина емкости переходного конденсатора должна быть такой, чтобы ее сопротивление на самых низких частотах усиливаемого сигнала было в несколько раз меньше входного сопротивления последующего каскада.

Для усилителя ВЧ минимальная частота равна 150 кГц (длина волны 2000 м), а входное сопротивление усилительного каскада составляет в среднем несколько сотен Ом. Для удовлетворения требуемого условия емкость конденсаторов С2, С3, должна быть не менее 6000 пФ. За счет более высокого входного сопротивления детектора емкость конденсатора С5 может быть уменьшена до 2000-3000 пФ. В данном случае с целью уменьшения количества используемых номиналов величина переходных конденсаторов С2, С3, C5, выбрана равной 6800 пФ.

Можно использовать конденсаторы емкостью 2200 или 3300 пФ, но тогда будет наблюдаться некоторое уменьшение усиления на самых низких частотах.

Конденсаторы С4 и С6 являются блокировочными. Они предназначены для шунтирования резисторов R4 и R9 по переменному току. Емкость этих конденсаторов должна быть такой, чтобы их сопротивление на самых низких усиливаемых частотах не превосходило величины выходного сопротивления каскада со стороны эмиттера. Обычно это сопротивление в несколько раз меньше входного сопротивления каскада, поэтому емкость блокировочного конденсатора должна быть в несколько раз больше емкости переходного конденсатора. В данном приемнике конденсаторы С4 и С6 выбраны равными по 0,047 мкФ.

Необходимо указать назначение конденсаторов С10 - С15 и резисторов R5 и R10. Конденсаторы C11, C13, С15 шунтируют по переменному току батарею питания, ослабляя действие обратной связи между каскадами через внутреннее сопротивление батареи. Резисторы R5, R10 и конденсаторы С10,С12, C14 образуют развязывающий фильтр, препятствующий возникновению положительной обратной связи между каскадами УРЧ, а так же препятствуют проникновению сигналов ВЧ по цепям питания в усилитель НЧ и наоборот.

Детекторный каскад. Сигнал ВЧ с выхода транзистора VT2 поступает на вход детекторного каскада, выполненного по схеме с удвоением напряжения. В детекторный каскад входят переходный конденсатор С5, диоды VD1 и VD2, конденсатор С7 и резистор R11. Выделение электрических колебаний звуковой частоты из ВЧ сигнала осуществляется диодами VD1 и VD2. Резистор R11 и конденсатор С7 образуют фильтрующую цепочку, сопротивление которой велико для постоянного тока и тока электрических колебаний звуковых частот и очень мало для токов РЧ. В результате этого падение напряжения ЗЧ на резисторе R11 значительно больше, чем РЧ величиной которого можно не считаться.

Усилитель мощности звуковой частоты. Продетектированный низкочастотный сигнал через регулятор громкости R11 поступает на микросхему УМЗЧ DA1 (TDA2822M), включенную по мостовой схеме для достижения максимальной выходной мощности при минимуме потребляемой энергии, при этом нужно всего два внешних конденсатора – С8 и С9.

Громкоговорителем может служить любая динамическая головка мощностью от 0,1 Вт и сопротивлением от 6 Ом и выше. Применив головку сопротивлением 25..50 Ом и, потеряв в громкости приема, удается значительно уменьшить потребляемый приемником ток.

Детали, конструкция и монтаж. В приемнике применяются готовые детали. Самодельными являются катушки магнитной антенны, монтажная плата. Пайку соединений производят свинцово-оловянным припоем, например ПОС-90. В качестве флюса применяется канифоль в твердом или жидком виде. Следует иметь в виду, что полупроводниковые приборы, малогабаритные конденсаторы и резисторы очень чувствительны к перегреву. Поэтому пайку следует производить маломощным паяльником (не более 50 Вт), не перегревая его. Прикосновение к месту соединения должно быть непродолжительным.

Настройка и работа с приемником. После окончания сборки внимательно проверяют правильность выполнения монтажа и расположения деталей, включения транзисторов и диодов. Только после этого подсоединяют источник питания. Затем к разомкнутым контактам выключателя питания подключают миллиамперметр на 10-30 мА.

Если все применяемые детали исправны и монтаж осуществлен правильно, то прибор покажет ток в пределах 6-8 мА. При значительно большем или меньшем токе следует отключить питание и вновь проверить весь монтаж.

Исправность каскадов усиления РЧ проверяют по показаниям вольтметра постоянного тока, включаемого между плюсовым проводом питания и соответствующими электродами транзисторов. Если измеренные значения отличаются от указанных не более чем на ±10%, то каскады можно считать исправными. В случае неисправности показания могут отличаться на 25-30 % и более.

Убедившись в правильности установленных режимов, приступают к настройке приемника. С этой целью регулятор громкости устанавливают в положение наибольшей громкости и вращением ручки настройки добиваются приема одной из местных радиостанций. Следует помнить о направленности приема магнитной антенной. Громкость приема будет наибольшей, когда продольная ось антенны расположена горизонтально и направлена перпендикулярно к направлению на станцию.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Аудио усилитель

TDA2822M

1 В блокнот
VT1, VT2 Биполярный транзистор

КТ3102

2 В блокнот
VD1, VD2 Диод

КД522А

2 В блокнот
С1 Конденсатор переменной емкости 5-380 пФ 1 В блокнот
С2, С3, С5, С7 Конденсатор 6800 пФ 4 В блокнот
С4, С6 Конденсатор 0.047 мкФ 2 В блокнот
С8, С11, С13, С15 Электролитический конденсатор 10 мкФ 10 В 4 В блокнот
С9, С10, С12, С14 Конденсатор 0.1 мкФ 4 В блокнот
R1, R6 Резистор

© 2024 magncompany.ru
Автомобильный портал