Как передается нервный импульс по нейронам. Нервный импульс и принцип его передачи

В клеточной мембране располагаются Na + , K + –АТФазы, натриевые и калиевые каналы.

Na + , K + –АТФаза за счет энергии АТФ постоянно перекачивает Na + наружу и К + внутрь, создавая трансмембранный градиент концентраций этих ионов. Натриевый насос ингибируется уабаином.

Натриевые и калиевые каналы могут пропускать Na + и К + по градиентам их концентраций. Натриевые каналы блокируются новокаином, тетродотоксином, а калиевые - тетраэтиламмонием.

Работа Na + ,K + –АТФазы, натриевых и калиевых каналов может создавать на мембране потенциал покоя и потенциал действия.

Потенциал покоя – это разность потенциалов между наружной и внутренней мембраной в условиях покоя, когда натриевые и калиевые каналы закрыты. Его величина составляет -70мВ, он создается в основном концентрацией K + и зависит от Na + и Cl - . Концентрация К + внутри клетки составляет 150 ммоль/л, снаружи 4-5 ммоль/л. Концентрация Na + внутри клетки составляет 14 ммоль/л, снаружи 140 ммоль/л. Отрицательный заряд внутри клетки создают анионы (глутамат, аспартат, фосфаты), для которых клеточная мембрана непроницаема. Потенциал покоя одинаков на всем протяжении волокна и не является специфической особенностью нервных клеток.

Раздражение нерва может приводит к возникновению потенциала действия.

Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней мембраной в момент возбуждения. Потенциал действия зависит от концентрации Na + и возникает по принципу «все или ничего».

Потенциал действия состоит из следующих стадий:

1. Локальный ответ . Если при действии стимула происходит изменение потенциала покоя до пороговой величины -50мВ, то открываются натриевые каналы, имеющие более высокую пропускную способность, чем калиевые.

2. Стадия деполяризации. Поток Na + внутрь клетки приводит сначала к деполяризации мембраны до 0 мВ, а затем к инверсии полярности до +50мВ.

3. Стадия реполяризации. Натриевые каналы закрываются, а калиевые открываются. Выход К + из клетки восстанавливает мембранный потенциал до уровня потенциала покоя.

Ионные каналы открываются на непродолжительное время и после их закрытия натриевый насос восстанавливает исходное распределение ионов по сторонам мембраны.

Нервный импульс

В отличие от потенциала покоя, потенциал действия охватывает лишь очень небольшой участок аксона (в миелинизированных волокнах – от одного перехвата Ранвье до соседнего). Возникнув в одном участке аксона, потенциал действия вследствие диффузии ионов из этого участка вдоль волокна снижает потенциал покоя в соседнем участке и вызывает здесь то же развитие потенциала действия. Благодаря этому механизму потенциал действия распространяется по нервным волокнам и называется нервным импульсом .

В миелинизированном нервном волокне натриевые и калиевые ионные каналы расположены в немиелинизированных участках перехватов Ранвье, где мембрана аксона контактирует с межклеточной жидкостью. Вследствие этого нервный импульс перемещается «скачками»: ионы Na + , поступающие внутрь аксона при открытии каналов в одном перехвате, диффундируют вдоль аксона по градиенту потенциалов до следующего перехвата, снижают здесь потенциал до пороговых значений и тем самым индуцируют потенциал действия. Благодаря такому устройству скорость поведения импульса в миелинизированном волокне в 5-6 раз больше, чем в немиелинизированных волокнах, где ионные каналы расположены равномерно по всей длине волокна и потенциал действия перемещается не скачками, а плавно.

Синапс: виды, строение и функции

Вальдаер в 1891г. сформулировал нейронную теорию , согласно которой нервная система состоит из множества отдельных клеток – нейронов. В ней оставался неясным вопрос: каков механизм коммуникации между единичными нейронами? Ч. Шеррингтон в 1887г. для объяснения механизма взаимодействия нейронов ввел термин «синапс» и «синаптическая передача».

Экстерорецептивная чувствительность

Первый нейрон

Импульсы от всех периферических рецепторов поступают в спинной мозг через задний корешок, который состоит из большого количества волокон, являющихся аксонами псевдоуниполярных клеток межпозвонкового (спинно-мозгового) узла. Назначение этих волокон различно.

Часть из них, войдя в задний рог, проходит по поперечнику спинного мозга к клеткам переднего рога (первый мотонейрон), тем самым выполняя роль афферентной части рефлекторной спинальной дуги кожных рефлексов.

Второй нейрон

Другая часть волокон заканчивается в клетках кларкова столба, откуда второй нейрон идет в дорсальных отделах боковых столбов спинного мозга под названием спиномозжечкового дорсального пучка Флексига. Третья группа волокон заканчивается у клеток желатинозной субстанции заднего рога. Отсюда вторые нейроны, образуя спиноталамический путь, совершают впереди центрального канала спинного мозга в передней серой спайке переход на противоположную сторону и по боковым столбам, а затем в составе медиальной петли доходят до зрительного бугра.

Третий нейрон

Третий нейрон идет от зрительного бугра через заднее бедро внутренней капсулы к корковому концу кожного анализатора (задняя центральная извилина). По этому пути передаются экстерорецептивные болевые и температурные, отчасти тактильные раздражения. Значит, экстерорецептивная чувствительность с левой половины туловища проводится по правой половине спинного мозга, с правой половины - по левой.

Проприоцептивная чувствительность

Первый нейрон

Иные соотношения у проприоцептивной чувствительности. Связанная с передачей этих раздражений четвертая группа волокон заднего корешка, войдя в спинной мозг, не заходит в серое вещество заднего рога, а непосредственно поднимается по задним столбам спинного мозга под названием нежного пучка (Голля), а в шейных отделах - клиновидного пучка (Бурдаха). От этих волокон отходят короткие коллатерали, которые подходят к клеткам передних рогов, являясь тем самым афферентной частью проприоцептивных спинальных рефлексов. Наиболее длинные волокна заднего корешка в виде первого нейрона (периферического, идущего, однако, на большом расстоянии в центральной нервной системе - по спинному мозгу) тянутся до нижних отделов продолговатого мозга, где заканчиваются в клетках ядра пучка Голля и ядра пучка Бурдаха.

Второй нейрон

Аксоны этих клеток, образующих второй нейрон проводников проприоцептивной чувствительности, переходят вскоре на другую сторону, занимая этим перекрестом межоливную область продолговатого мозга, которая носит название шва. Совершив переход на противоположную сторону, эти проводники образуют медиальную петлю, располагающуюся сначала в межоливном слое вещества продолговатого мозга, а затем в дорсальных отделах варолиева моста. Пройдя через ножки мозга, эти волокна входят в зрительный бугор, у клеток которого и заканчивается второй нейрон проводников проприоцептивной чувствительности.

Третий нейрон

Клетки зрительного бугра являются началом третьего нейрона, по которому раздражения проводятся через заднюю часть заднего бедра внутренней капсулы к задней и отчасти к передней центральной извилине (двигательному и кожному анализаторам). Здесь-то, в клетках коры, происходит анализ и синтез принесенных раздражений, и мы ощущаем прикосновение, движение и другие виды проприоцептивных раздражений. Таким образом, мышечные и отчасти тактильные раздражения с правой половины туловища идут по правой же половине спинного мозга, совершая переход на противоположную сторону только в продолговатом мозге.

Мотонейрон.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов – нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления – аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну, подобно электрическим проводам присоединенным к домам.. Таким образом, один мотонейрон управляет целой группой волокон (так называемая нейромоторная единица ), которая работает как единое целое.

Мышца состоит из множества нейромоторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Рассмотрим более детальное строение клетки нейрона.

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон .

Нейроны – специализированные клетки, способные принимать, обрабатывать, передавать и хранить информацию, организовывать реакцию на раздражения, устанавливать контакты с другими нейронами, клетками органов.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый эндоплазматический ретикулум с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов).

Дендриты - ветвящиеся короткие отростки, воспринимающие сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей. Дендрит проводит нервные импульсы к телу нейрона.

Аксоны – длинный отросток, для проведения возбуждения от тела нейрона.

Уникальными способностями нейрона являются:

- способность генерировать электрические заряды
- передавать информацию с помощью специализированных окончаний – синапсов.

Нервный импульс.

Итак, как же происходит передача нервного импульса?
Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).
Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.
Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.
При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.
Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.
Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.

Мы выяснили как нервный импульс проходит по нейрону, теперь разберемся с тем как же передается импульс от аксона к мышечному волокну.

Синапс.

Аксон размещается в мышечном волокне в своеобразных карманах, образующийся из выпячиваний аксона и цитоплазмы клеточного волокна.
Между ними образовывается нервно-мышечный синапс.

Нервно-мышечный синапс – нервное окончание между аксоном мотонейрона и мышечным волокном.

  1. Аксон.
  2. Клеточная мембрана.
  3. Синаптические везикулы аксона.
  4. Белок-рецептор.
  5. Митохондрия.

Синапс состоит из трех частей:
1) пресинаптического(отдающий) элемента, содержащего синаптические пузырьки (везикулы) с медиатором
2) синаптической щели (щель передачи)
3) постсинаптического(воспринимающий) элемента с белками-рецепторами, обеспечивающими взаимодействие медиатора с постсинаптической мембраной и белками-ферментами, разрушающими или инактивирующими медиатор.

Пресинаптический элемент – элемент который отдает нервный импульс.
Постсинаптический элемент – элемент принимающий нервный импульс.
Синаптическая щель – промежуток в котором происходит передача нервного импульса.

Когда нервный импульс в виде потенциала действия (трансмембранный ток, обусловленный ионами натрия и калия) «приходит» к синапсу, в пресинаптический элемент поступают ионы кальция.

Медиатор биологически активное вещество, выделяемое нервными окончаниями и передающее нервный импульс в синапсе. В передаче импульса к мышечному волокну используется медиаторацетилхолин.

Ионы кальция обеспечивают разрыв пузырьков и выход медиатора в синаптическую щель. Пройдя через синаптическую щель, медиатор связывается с белками-рецепторами на постсинаптической мембране. В результате этого взаимодействия на постсинаптической мембране возникает новый нервный импульс, который передается другим клеткам. После взаимодействия с рецепторами медиатор разрушается и удаляется белками-ферментами. Информация передается другим нервным клеткам в закодированном виде (частотные характеристики потенциалов, возникающих на постсинаптической мембране; упрощенным аналогом такого кода является штрих-код на упаковках товаров). «Расшифровка» происходит в соответствующих нервных центрах.
Не связавшийся с рецептором медиатор либо разрушается специальными ферментами, либо захватывается обратно в пузырьки пресинаптического окончания.

Завораживающее видео о том как проходит нервный импульс:

Еще более красивое видео

Синапс

Как проводится нервный импульс (слайд шоу)

В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны . Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых дендритами , служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется аксоном и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном.

Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы — как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).

Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).

Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу, и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия . При прохождении потенциала действия через определенную точку аксона, насосы включаются и восстанавливают состояние покоя.

Потенциал действия распространяется довольно медленно — не более доли дюйма за секунду. Для того чтобы увеличить скорость передачи импульса (поскольку, в конце концов, не годится, чтобы сигнал, посланный мозгом, достигал руки лишь через минуту), аксоны окружены оболочкой из миелина, препятствующей притоку и оттоку калия и натрия. Миелиновая оболочка не непрерывна — через определенные интервалы в ней есть разрывы, и нервный импульс перескакивает из одного «окна» в другое, за счет этого скорость передачи импульса возрастает.

Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом . Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющие (пресинаптическими ) пузырьками , в каждом из которых находятся особые соединения — нейромедиаторы . При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).

После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом ). В конце XX века было сделано поразительное научное открытие — оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac*) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.

По-прежнему нет ответа на фундаментальный вопрос о том, что же заставляет нейрон инициировать потенциал действия — выражаясь профессиональным языком нейрофизиологов, неясен механизм «запуска» нейрона. В этом отношении особенно интересны нейроны головного мозга, которые могут принимать нейромедиаторы, посланные тысячей соседей. Об обработке и интеграции этих импульсов почти ничего не известно, хотя над этой проблемой работают многие исследовательские группы. Нам известно лишь, что в нейроне осуществляется процесс интеграции поступающих импульсов и выносится решение, следует или нет инициировать потенциал действия и передавать импульс дальше. Этот фундаментальный процесс управляет функционированием всего головного мозга. Неудивительно, что эта величайшая загадка природы остается, по крайней мере сегодня, загадкой и для науки!

Механизмы взаимодействия нервных клеток

Нервные клетки функционируют в тесном взаимодействии друг с другом.

Значение нервных импульсов. Все взаимодействия между нервными клетками осуществляются благодаря двум механизмам: 1) влияниям электрических полей нервных клеток (электротоническим влияниям) и 2) влияниям нервных импульсов.

Первые распространяются на очень небольшие территории мозга Электрический заряд нервной клетки создает вокруг нее электрическое поле, колебания которого вызывают изменения электрических полей лежащих рядом нейронов, что приводит к изменениям их возбудимости, лабильности и проводимости. Электрическое поле нейрона имеет сравнительно небольшую протяженность-около 100 мк, оно быстро затухает по мере удаления от клетки и может оказывать воздействие лишь на соседние нейроны.

Второй механизм обеспечивает не только ближайшие взаимодействия, но и передачу нервных влияний на большие расстояния. Именно с помощью нервных импульсов происходит объединение отдаленных и изолированных участков мозга в общую, синхронно работающую систему, что необходимо для протекания сложных форм деятельности организма. Нервный импульс, следовательно, является основным средством связи между нейронами. Высокая скорость распространения импульсов и локальное их воздействие на избранную точку мозга способствуют быстрой и точной передаче информации в нервной системе. В межнейронных взаимодействиях используется частотный код, т. е. изменения функционального состояния и характера ответных реакций одной нервной клетки кодируются изменением частоты импульсов (потенциалов действия), которые она посылает к другой нервной клетке. Общее количество импульсов, отправляемых нервной клеткой в единицу времени, или ее суммарная импульсная активность,-важный физиологический показатель деятельности нейрона.

Основные элементы химического синапса: синаптическая щель, везикулы (синаптические пузырьки), нейромедиаторы, рецепторы.

Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумянейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном. Однако сам Шеррингтон утверждал, что получил идею этого термина в разговоре от физиолога Майкла Фостера .

Классификации синапсов

Основные элементы электрического синапса (эфапса): а - коннексон в закрытом состоянии; b - коннексон в открытом состоянии; с - коннексон, встроенный в мембрану; d - мономер коннексина, е -плазматическая мембрана; f - межклеточное пространство; g - промежуток в 2-4 нанометра в электрическом синапсе; h - гидрофильный канал коннексона.

По механизму передачи нервного импульса

    химический - это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.

    электрический (эфапс) - место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований - коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм). Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.

    смешанные синапсы - Пресинаптический потенциал действия создает ток, который деполяризуетпостсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

По местоположению и принадлежности структурам[править | править вики-текст]

    периферические

    • нервно-мышечные

      нейросекреторные (аксо-вазальные)

      рецепторно-нейрональные

    центральные

    • аксо-дендритические - с дендритами, в том числе

      • аксо-шипиковые - с дендритными шипиками, выростами на дендритах;

    • аксо-соматические - с телами нейронов;

      аксо-аксональные - между аксонами;

      дендро-дендритические - между дендритами;

Различные варианты расположения химических синапсов

По нейромедиатору

    аминергические, содержащие биогенные амины (например, серотонин, дофамин);

    • в том числе адренергические, содержащие адреналин или норадреналин;

    холинергические, содержащие ацетилхолин;

    пуринергические, содержащие пурины;

    пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия

    возбуждающие

    тормозные .

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин.

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные . Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы .

К специальным формам синапсов относятся шипиковые аппараты , в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

© 2024 magncompany.ru
Автомобильный портал